modulii for primes making the 447-tuples.
See the example for more information
The 447-tuple is expressed as the set of integers from the interval
x+1 to x+3159, where x simultaneously satisfies
x=p1*n1+r1, x=p2*n2+r2, x=p3*n3+r3 ...
when
p1,p2,p3 ... are the primes 2,3,5 ...
r1,r2,r3 ... are the residues listed below
and n1,n2,n3 ... are integer multipliers.
Also, x could be expressed as x=C*n+R, where the value of C and R
could be determined using the residues and the Chinese Remainder
Theorem.
2 | , 3 | , 5 | , 7 | , 11 | , 13 | , 17 | , 19 | , 23 | , 29 | , 31 | , 37 | , 41 | , 43 | , 47 | , 53 | , 59 | , 61 | , 67 | , 71 | , 73 | , 79 | , 83 | , 89 | , 97 | , 101 | , 103 | , 107 | , 109 | , 113 | |
1 {3159; | 0 | , 2 | , 0 | , 4 | , 6 | , 11 | , 2 | , 10 | , 12 | , 5 | , 16 | , 35 | , 5 | , 22 | , 24 | , 45 | , 30 | , 27 | , 34 | , 36 | , 40 | , | , | , 52 | , 5 | , 26 | , | , | , | , 14} |
2 {3159; | 0 | , 2 | , 0 | , 4 | , 6 | , 11 | , 2 | , 10 | , 12 | , 5 | , 16 | , 35 | , 5 | , 22 | , 24 | , 45 | , 30 | , 27 | , 34 | , 36 | , 40 | , | , | , 52 | , 11 | , 26 | , | , | , 90 | , 14} |
3 {3159; | 0 | , 2 | , 0 | , 4 | , 6 | , 11 | , 2 | , 10 | , 12 | , 5 | , 16 | , 35 | , 5 | , 22 | , 24 | , 45 | , 30 | , 27 | , 34 | , 36 | , 40 | , | , | , 52 | , 29 | , 26 | , | , | , 90 | , 14} |
4 {3159; | 0 | , 2 | , 0 | , 4 | , 6 | , 11 | , 2 | , 10 | , 12 | , 5 | , 16 | , 35 | , 5 | , 22 | , 24 | , 45 | , 30 | , 27 | , 34 | , 36 | , 40 | , | , | , 52 | , 65 | , 26 | , | , | , 90 | , 14} |
5 {3159; | 0 | , 2 | , 0 | , 4 | , 6 | , 11 | , 2 | , 10 | , 12 | , 5 | , 16 | , 35 | , 5 | , 22 | , 24 | , 45 | , 30 | , 27 | , 34 | , 36 | , 40 | , | , | , 52 | , 70 | , | , | , | , 90 | , 14} |
6 {3159; | 0 | , 2 | , 0 | , 4 | , 6 | , 11 | , 2 | , 10 | , 12 | , 5 | , 16 | , 35 | , 5 | , 22 | , 24 | , 45 | , 30 | , 27 | , 34 | , 36 | , 40 | , | , | , 52 | , 94 | , 26 | , | , | , 90 | , 14} |
7 {3159; | 0 | , 2 | , 0 | , 6 | , 8 | , 3 | , 13 | , 15 | , 20 | , 23 | , 13 | , 17 | , 39 | , 42 | , 34 | , 41 | , 3 | , 22 | , 44 | , 0 | , 54 | , | , | , 82 | , 51 | , 3 | , | , | , | , 95} |
8 {3159; | 0 | , 2 | , 0 | , 6 | , 8 | , 3 | , 13 | , 15 | , 20 | , 23 | , 13 | , 17 | , 39 | , 42 | , 34 | , 41 | , 3 | , 22 | , 44 | , 0 | , 54 | , | , | , 82 | , 45 | , 3 | , | , | , 18 | , 95} |
9 {3159; | 0 | , 2 | , 0 | , 6 | , 8 | , 3 | , 13 | , 15 | , 20 | , 23 | , 13 | , 17 | , 39 | , 42 | , 34 | , 41 | , 3 | , 22 | , 44 | , 0 | , 54 | , | , | , 82 | , 27 | , 3 | , | , | , 18 | , 95} |
10 {3159; | 0 | , 2 | , 0 | , 6 | , 8 | , 3 | , 13 | , 15 | , 20 | , 23 | , 13 | , 17 | , 39 | , 42 | , 34 | , 41 | , 3 | , 22 | , 44 | , 0 | , 54 | , | , | , 82 | , 88 | , 3 | , | , | , 18 | , 95} |
11 {3159; | 0 | , 2 | , 0 | , 6 | , 8 | , 3 | , 13 | , 15 | , 20 | , 23 | , 13 | , 17 | , 39 | , 42 | , 34 | , 41 | , 3 | , 22 | , 44 | , 0 | , 54 | , | , | , 82 | , 83 | , | , | , | , 18 | , 95} |
12 {3159; | 0 | , 2 | , 0 | , 6 | , 8 | , 3 | , 13 | , 15 | , 20 | , 23 | , 13 | , 17 | , 39 | , 42 | , 34 | , 41 | , 3 | , 22 | , 44 | , 0 | , 54 | , | , | , 82 | , 59 | , 3 | , | , | , 18 | , 95} |
These k-tuples with 447 primes in a interval of 3159 consecutive integers
have also been confirmed by Mischa Kenn, Joerg Waldvogel/Ralph Gasser.
© 2005 Thomas J Engelsma