Return to K-tuples page

modulii for primes making the 200-tuples.

See the example for more information

The 200-tuple is expressed as the set of integers from x+1 to x+1267,
where x satisfies x=p1*n1+r1, x=p2*n2+r2, x=p3*n3+r3 ...
p1,p2,p3 ... are the primes 2,3,5 ...
r1,r2,r3 ... are the residues listed below
and n1,n2,n3 ... are integer multipliers.

Also, x could be expressed as x=C*n+R, where the value of C and R
could be determined using the residues and the Chinese Remainder
Theorem.

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61
 
{1267; 0 , 0 , 3 , 3 , 9 , 10 , 16 , 2 , 4 , 24 , 8 , 31 , 0 , 14 , , 17 , , 44}
{1267; 0 , 0 , 3 , 3 , 9 , 10 , 16 , 2 , 4 , 24 , 8 , 31 , 0 , 14 , , 17 , , 43}
{1267; 0 , 0 , 3 , 3 , 9 , 10 , 16 , 2 , 4 , 24 , 8 , 31 , 0 , 14 , , 51 , , 44}
{1267; 0 , 0 , 3 , 3 , 9 , 10 , 16 , 2 , 4 , 24 , 8 , 31 , 0 , 14 , , 51 , , 43}
{1267; 0 , 2 , 0 , 5 , 5 , 10 , 11 , 12 , 22 , 26 , 20 , 16 , 38 , 7 , , 51 , , 5}
{1267; 0 , 2 , 0 , 5 , 5 , 10 , 11 , 12 , 22 , 26 , 20 , 16 , 38 , 7 , , 51 , , 4}
{1267; 0 , 2 , 0 , 5 , 5 , 10 , 11 , 12 , 22 , 26 , 20 , 16 , 38 , 7 , , 32 , , 5}
{1267; 0 , 2 , 0 , 5 , 5 , 10 , 11 , 12 , 22 , 26 , 20 , 16 , 38 , 7 , , 32 , , 4}