modulii for primes making the 150-tuples.
See the example for more information
The 150-tuple is expressed as the set of integers from x+1 to x+903,
where x satisfies x=p1*n1+r1, x=p2*n2+r2, x=p3*n3+r3 ...
p1,p2,p3 ... are the primes 2,3,5 ...
r1,r2,r3 ... are the residues listed below
and n1,n2,n3 ... are integer multipliers.
Also, x could be expressed as x=C*n+R, where the value of C and R
could be determined using the residues and the Chinese Remainder
Theorem.
2 | , 3 | , 5 | , 7 | , 11 | , 13 | , 17 | , 19 | , 23 | , 29 | , 31 | , 37 | , 41 | , 43 | , 47 | , 53 | , 59 | |
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 22 | , 2} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 32 | , 2} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 6 | , 2} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 22 | , 9} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 32 | , 9} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 22 | , 12} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 22 | , 32} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 22 | , 10} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 32 | , 12} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 14 | , 32 | , 32} | ||||
{903; | 0 | , 2 | , 4 | , 4 | , 7 | , 5 | , 16 | , 12 | , 7 | , 23 | , 7 | , 32 | , 32 | , 16 | , 24 | , | , 28} |
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 31 | , 33} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 21 | , 31} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 31 | , 34} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 31 | , 11} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 31 | , 31} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 31 | , 0} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 29 | , 21 | , 11 | , 28 | , 34 | , | , 50} |
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 10 | , 0} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 21 | , 34} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 21 | , 11} | ||||
{903; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 4 | , 18 | , 0 | , 11 | , 22 | , 21 | , 0} |