Return to K-tuples page

modulii for primes making the 50-tuples.

See the example for more information

The 50-tuple is expressed as the set of integers from x+1 to x+247,
where x satisfies x=p1*n1+r1, x=p2*n2+r2, x=p3*n3+r3 ...
p1,p2,p3 ... are the primes 2,3,5 ...
r1,r2,r3 ... are the residues listed below
and n1,n2,n3 ... are integer multipliers.

Also, x could be expressed as x=C*n+R, where the value of C and R
could be determined using the residues and the Chinese Remainder
Theorem.

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23
 
{247; 0 , 0 , 3 , 6 , 0 , 12 , 2 , 10}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 2 , 3 , 6}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 2 , 3 , 2}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 2 , 3 , 18}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 2 , 3 , 10}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 11 , , 6}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 11 , , 2}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 11 , , 18}
{247; 0 , 0 , 3 , 6 , 0 , 12 , 11 , , 10}
{247; 0 , 0 , 4 , 6 , 8 , 3}
{247; 0 , 0 , 3 , 6 , 9 , 8 , 15 , 2}
{247; 0 , 2 , 4 , 4 , 9 , 11}
{247; 0 , 2 , 0 , 4 , 8 , 6 , 12 , 18}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 16 , , 8}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 8 , 17 , 8}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 16 , , 0}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 16 , , 16}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 16 , , 12}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 8 , 17 , 0}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 8 , 17 , 16}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 8 , 17 , 12}
{247; 0 , 2 , 0 , 4 , 6 , 2 , 8 , 10}