modulii for primes making the 50-tuples.
See the example for more information
The 50-tuple is expressed as the set of integers from x+1 to x+247,
where x satisfies x=p1*n1+r1, x=p2*n2+r2, x=p3*n3+r3 ...
p1,p2,p3 ... are the primes 2,3,5 ...
r1,r2,r3 ... are the residues listed below
and n1,n2,n3 ... are integer multipliers.
Also, x could be expressed as x=C*n+R, where the value of C and R
could be determined using the residues and the Chinese Remainder
Theorem.
2 | , 3 | , 5 | , 7 | , 11 | , 13 | , 17 | , 19 | , 23 | |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 2 | , 10} | |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 2 | , 3 | , 6} |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 2 | , 3 | , 2} |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 2 | , 3 | , 18} |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 2 | , 3 | , 10} |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 11 | , | , 6} |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 11 | , | , 2} |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 11 | , | , 18} |
{247; | 0 | , 0 | , 3 | , 6 | , 0 | , 12 | , 11 | , | , 10} |
{247; | 0 | , 0 | , 4 | , 6 | , 8 | , 3} | |||
{247; | 0 | , 0 | , 3 | , 6 | , 9 | , 8 | , 15 | , 2} | |
{247; | 0 | , 2 | , 4 | , 4 | , 9 | , 11} | |||
{247; | 0 | , 2 | , 0 | , 4 | , 8 | , 6 | , 12 | , 18} | |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 16 | , | , 8} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 8 | , 17 | , 8} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 16 | , | , 0} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 16 | , | , 16} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 16 | , | , 12} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 8 | , 17 | , 0} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 8 | , 17 | , 16} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 8 | , 17 | , 12} |
{247; | 0 | , 2 | , 0 | , 4 | , 6 | , 2 | , 8 | , 10} |